

French manufacturer of solar panels

SPRING hybrid solar panel (PVT)[®] designed and manufactured in France (certified Made in France), produces both electricity and hot water.

PHOTOVOLTAIC FRONT FACE

High performance monocrystalline cells cooled by water circulation

Anti-reflective glass ensuring high performance even in diffused light

THERMAL REAR FACE

Hot water production thanks to an ultra-thin patented heat exchanger completely integrated into the panel

DualBoost® : Photovoltaic efficiency boost by cooling cells

1.....

WARRANTY

French manufacturer 10 year product warranty, starting from the activation of the guarantees

25 year linear performance warranty on photovoltaic performance

* Warranty activation conditions on dualsun.com

QUALITY & SAFETY

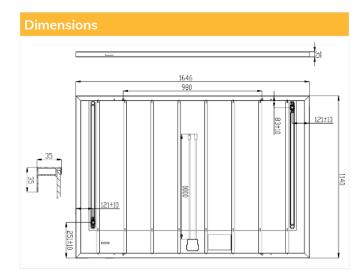
- CE marking
- IEC 61215 & 61730 n°16828 Rev.0
- SOLAR KEYMARK n°16826 + n°16827 Rev.1
- CEC listed / UL 1703 in progress / ICC-SRCC n°10002137

DUALQUICKFIT[®]

DualQuickfit

Patented Plug & Play hydraulic connection system for faster and more reliable installation of the SPRING® panel

INDUSTRY OF THE FUTURE LABEL Engineered in France : R&D center in Marseille


R&D center in Marseille Made in France (certificate FR-IMF-2022-293/294): DIN EN ISO 9001: 2015 certified factory

COMPATIBLE PANEL FOR APPLICATIONS:				
DHW	HP	POOL		

SPRING[®]400 Shingle Black

Physical characteristics				
Length	1646 mm			
Width	1140 mm			
Thickness	35 mm			
	Non insulated	Insulated		
Empty / full weight	26,3 / 31,3 kg	27,1/32,1 kg		
Number of cells	360			
Cell type	PERC Monocrystalline			
Connectors	MC4 / MC4 compatible			
Cable length	1000 mm			
Maximum load	5400 Pa (snow) / 2400 Pa (wind)			
Frame / Backsheet	Black anodised aluminium / Black			

Thermal power output as a function of the temperature of the water in the panel and by application

Performances derived from the values a0, a1 (wind u = 1 m / s) in STC conditions (T = 25 $^{\circ}$ C, G = 1000 W / m²)

Photovoltaic characteristics		
Nominal power	400 W	
Photovoltaic yield at 25 years	84,8%	
Output power tolerance	+/- 3%%	
Module efficiency	21,3 %	
Rated voltage (V _{mpp})	41,00 V	
Rated current (I _{mpp})	9,76 A	
Open circuit voltage (V _{oc})	49,50 V	
Short-circuit current (I _{sc})	10,12 A	
Voltage temperature coefficient (μV_{oc})	-0,27 %/°K	
Current temperature coefficient (μI_{sc})	0,04 %/°K	
Power temperature coefficient (μP_{mpp})	-0,34 %/°K	
Maximum system voltage	1500 VDC	
Maximum reverse current	20 A	
NMOT	42,3 +/- 2°C	
Application class	Class II	
* STC conditions (AM 1.5 - 1000 W/m ² - 25°C)		

Measurement tolerance: +/- 3%

Thermal characteristics					
Thermal power	660 W _{th} /m²*				
Collector area	1,876 m²				
Heat exchanger volume	5 L				
Max operating pressure	1,5 bar				
Pressure drop	Portrait	Landscape			
(Pa mmH20) at 60 L/h	186 19	441 45			
at 100 L/h	461 47	961 98			
Hydraulic inlet / outlet	DualQuickft® fitting				
	Non insulated	Insulated			
Stagnation temperature	80°C	90°C			
Optical efficiency a ₀	63,3 %**	62,1 %**			
Coefficient a ₁	11,5 W/K/m²**	7,4 W/K/m²**			
Coefficient a ₂	0 W/(m².K²)**	0 W/(m².K²)**			

* Thermal power calculated with wind u = 0 m/s, DT = 0, G = 1000 W/m² ** The coefficients a_0 , a_1 and a_2 result from EN 9806: 2017 certification tests for solar collectors without glazing carried out by KIWA for a **wind speed u** = 1 m/s: $a_0 = n_0 - c_6*u'$; $a_1 = c_1 + c_3*u'$; u' = u - 3

v1.4 – June 2022

- & +33 4 13 41 53 70 ⊠ contact@dualsun f
- 🖂 contact@dualsun.fr
- dualsun.com